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The formation of homo- and heteroclinic orbits (HOs) is taken as one of the criteria of transition from 
regular to chaotic behaviour in solutions of a dynamical system ([1, 2], etc.). To construct these orbits, 
one has to define appropriate initial conditions and the displacement of the unstable equilibrium position, 
as well as the mutual functional dependence of certain parameters of the system (such as the dependence 
of the amplitude of the applied periodic force on the parameter  defining dissipation in the system). A 
large number of publications devoted to the formation of HOs use the well-known Mel'nikov condition 
([3-6], etc.), which does not enable all the unknown parameters to be determined; in that connection 
a separatrix of the generating autonomous Duffing equation is used in the Mel'nikov condition. In the 
general case, the problem of effective analytical approximation of HOs has yet to be solved. 

In this paper a new approach is proposed to the construction of HOs in non-linear dynamical systems 
with two-dimensional phase space. Pad6 and quasi-Pad6 approximants are used to approximate both 
HOs in the phase space and the corresponding solution as a function of time. We note that quasi-Pad6 
approximants containing powers and exponential functions of a certain parameter have been considered 
before [7]. The convergence condition used in the theory of non-linear normal oscillations [8-10] and 
the condition at infinity have made it possible to solve a boundary-value problem formulated for HOs 
and to calculate the initial values with acceptable accuracy. It is essential that the procedure realized 
in this paper to construct HOs - and, accordingly, to determine the beginning of the transition to chaotic 
behaviour of the system - is more accurate than the normally used Mel'nikov criterion, since here it is 
not necessary to use a separatrix of the autonomous Duffing equation. Note that Pad6 approximants 
have been used successfully to construct HOs in the non-linear Schr6dinger equation and the Lorenz 
system [11-14]. 

1. T H E  N E C E S S A R Y  C O N D I T I O N  F O R  T H E  C O N V E R G E N C E  OF 
PADI~ A P P R O X I M A N T S  

Assume that a local expansion of the solution has been obtained, in powers of a parameter  c 

y(0) = 0~0+~1C+0~2C2+... 

(possibly also a series in powers of c q for very large parameter  values: y~=) = 1]0 + ~llc -1 + 132 c-2 + ---). 
The parameter  may be the amplitude value of the solution or the energy of the system. For analytic 
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continuation of the solution (or in order to match two asymptotic local expansions) one uses rational- 
fractional diagonal Pad6 approximants (PAs) [15] whose form is (summation f romj  = 0 t o j  = s): 

AI-I, EajcJ ~ a j c J - S  
- - - =  s =  1 , 2  . . . .  

 bjc' 
(1.1) 

Comparing expressions (1.1) with the local expansions and retaining in the latter only terms o f  order 
up to r (i,: = 2~ + 1 in the case of analytic continuation, r = s in the case of matching of local expansions) 
in the parameters c and c -1, one obtains a system of 2s + 2 linear homogeneous algebraic equations 
for the coefficients aj, bj. Since the determinant A s of the system in the general case does not vanish, 
the system has a unique exact solution - the trivial solution. We shall look for PAs with non-zero 
coefficients aj, bj. We may assume without loss of generality that b0 = 1 for every PA. The system of 
algebraic equations for determining aj, bj now becomes over-determined. All the unknown coefficients 
may be determined from A s (or 2s + 1) equations, while the "error" of this approximate solution may 
be obtained by substituting all the coefficients in the remaining equation. It is obvious that the "error" 
is determined by the value of As, since a non-trivial solution and, consequently, an exact PA, may be 
obtained in this approximation with respect to c only provided a s = 0. Hence we obtain a necessary 
condition for convergence of the sequence of PAs (1.1) as s ~ ~o to a rational-fractional function 
PAoo 

limA s = 0 as s ---) o o  0.2) 

Condition (1.2) may also be used for quasi-Pad6 approximants, which contain powers and exponential 
functions of an unknown parameter. In addition, condition (1.2) can be used to obtain unknown 
parameters contained in local expansions. 

We note that the convergence condition (1.2) has been used in certain problems of non-linear 
oscillation theory [8-10, 13]. 

2. THE N O N - A U T O N O M O U S  D U F F I N G  E Q U A T I O N  

Consider the non-autonomous Diffing equation 

y" + Ay' + ky + Ty 3 = Bcosc0t (2.1) 

The Duffing equation, which arises in numerous applied problems (e.g. in the discretization of 
dynamical models of non-linear rods, plates, or shells), has been investigated in numerous publications. 
Chaotic behaviour of the solutions of this equation may be observed in the choice of different forms 
of elastic characteristics: soft (k > 0, 7 < 0) [16-18], stiff (k > 0, 7 > 0) [19], with zero linear stiffness 
(k = 0, 7 > 0) [20, 21], and with negative linear stiffness (k < 0, 7 > 0) [4, 22, 23]. 

Let us assume that  suitable transformations of the variables have reduced the equation to the form 

y" + By' - y +  y3 = fcosol t  (2.2) 

To construct HOs, one needs information about the initial point (a0, al), corresponding to t = 0, and 
about the relations among the parameters of the system, namely, o0,f, and 8. One also has to know the 
displacement b0 of the saddle point of the autonomous Duffing equation. Thus, a system of four 
equations is needed to determine these unknown quantities. 

Pad6 approximants are used for the analytical representation of the unknown orbit, and quasi-Pad6 
approximants for the analytical representation of the corresponding solution as a function of time. The 
convergence condition (1.2) will also be used. 

We also introduce a condition at infinity: it is required that the unknown orbit reach an unstable 
equilibrium position, i.e. (y, y ')  ~ (b0, 0) as t -+ _+ oo. 

In addition, we assume that y( t )  is an analytic function along the HO; in that case we can use the 
Taylor expansion ofy(t) in the neighbourhood of zero 

Y = ao + a l t  + a2t 2 + a3t 3 + a4 t4 + ... (2.3) 
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where 

3 2 
a 2 = ( a o - a o + f - ~ a l ) / 2 ,  a 3 = ( - 3 a o a l + a l - 2 ~ a 2 ) / 6  

2 2 2 
a 4 = ( -  6aoa I - 6aoa 2 + 2a 2 - fo~ - 6~a3)/24 . . . .  

and a0 and a 1 are arbitrary constants. 
Multiplying Eq. (2.1) byy'( t)  and integrating from t = 0 to any t along any orbit, we obtain 

t 2 
3 y2(t) a2 y4(t) an y'2(t) a l+M(O, t )=  0 

I ( y " - y + y  +~)y ' - f coso~ t )y 'd t=- - -~ - -+-~+ 4 4 + 2 2 
o 

(2.4) 

where 

q 

M(p, q) = I(~)y'-  fcostot)y'dt  

P 

Equation (2.4) defines an arbitrary phase orbit of the non-autonomous. Duffing equation. 
We will now consider a HO which reaches the unstable equilibrium position (b0, 0) at infinity. 

Integrating Eq. (2.4) from t = 0 to t = _+ ~,, we obtain 

+~ 2 

I ( Y " - y + y 3  + 6y,_fcoso~t)y,  dt=_No_a2+M(O,+~,,) = 0 
o 

(215) 

where 

2 2 4 4 
b0 ao bo a0 

No = - 2 " + ~  4 4 

It is interesting that integrating along a closed HO from t = --~ to t = +oo gives the well-known 
Mel'nikov condition 

M(-~ ,  +~,) = 0 

The Mel'nikov condition may be regarded as the condition that the energy of a non-autonomous 
dynamical system is conserved on the average along a Closed HO. In what follows, the Mel'nikov 
condition will not be directly utilized. 

Consider the integral M(O, t). Substitution of the local expansion (2.3) and integration yield 

M(O,t) = At  + Bt 2+ Ct 3+ Dt 4+ Et 5+.. .  

A = ( ~ ) a l - f ) a  l, B = ( 2 ( ~ a l - f ) a 2 + 2 ~ a l a z ) 1 2  

C = (3(~a I - f ) a  3 + 4~a 2 + (fo~2/2 + 3~a3)al)/3 

D = (4(~a I - f ) a  4 + 48ala 4 + 6~a2a 3 + 2(f¢02/2 + 3~a3)a2)/4 . . . .  

(2.6) 

We now reorganize the expansion (2.6) into a PA 

AI-I  3 = 
n i t +  (~2 t2 + ~3 t3 

l + l i t +  ~2t2+ ~3 t3 
(2.7) 
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Comparing the PA3 in the form (2.7) and the local expansion (2.6), we get 

o~ 2 = [-  2 A B D  2 + AB2F + AC2D _ Az CF + A Z D E -  BC 3 + 2BZCD _ B3E]/A 

ot 3 = [-  2 A B C F  + 2 A B D E -  2 A C D  2 + 2AC2E + A Z D F -  A2E z + 3 B C 2 D -  

_ 2 B 2 C E _  B2D 2 + B 3 F -  C4]/A 

Taking the 
equation 

13 2 = 

13 3 = 

A =  

limit 

[-  A CF + AD E - BCE - B D 2 + BE F + C2 D ]/ A 

[ A D F -  A E  2 - B C F  + BDE - CD 2 + C2 E]/A 

[ -  B D F  + B E  2 - 2CDE + CEF + D3]/A 

A C E -  A D  2 + 2 B D C -  B 2 E -  C 3 

at infinity in Eq. (2.6), with due attention to the representation (2.7), we obtain the 

N O - a~/2 + (X3/[~ 3 = 0 ( 2 . 8 )  

An additional equation is obtained by using the convergence condition (1.2) for the PA3 in the form 
(2.7): 

- A C F  2 + A C E G  + 2 A D E F -  AD2G - A E  3 + 2 B C D G  - 2 B C E F  + 2 B D E  2 - 2BD2 F -  
(2.9) 

- B2EG + B2F 2 -  3CD2E + 2C2DF + C2E 2 -  C3 G + D 4 = 0 

For analytic continuation of the local expansion (2.3) to infinity, we reorganize the local expansion 
(2.3) into a quasi-Pad6 approximant, which is chosen in a form similar to that of the corresponding 
solution (the separatrix solution) of the autonomous Duffing equation. We have 

y = a o + a lt + a2 t2 + . . .  = e-t(ao + a let+ (X2e2t + IX3e3t)/(1 + ~2 e2 t )  (2.10) 

The legitimacy of this representation, which successfully describes the behaviour of the orbit at infinity, 
has also been confirmed by trial numerical computations using the Runge-Kutta method, which will 
be presented below. 

It follows from Eq. (2.10) that 

b0 = Ix3/I]  2- (2.11) 

The coefficients ~/, ~j are determined from Eq. (2.10) by expanding the exponential functions in powers 
of t and equating the coefficients of like powers. 

Finally, the convergence condition can be obtained in the form (1.2) for quasi-Pad6 approximants 
of the form (2.10) 

1 2  4 7 5 2  
- + ~ a 2  + 4 a 2 a  3 - -i-~al -i'~ala2 - i-~ala3 - 4a ta  4 + 2ala  5 

2 
- 8a2a 4 + 12a2a 5 + 6a 3 - 12aaa 4 + 24a3a 5 - 24a 2 = 0 (2.12) 

Equations (2.8), (2.9), (2.11), and (2.12) form a system of four non-linear algebraic equations for 
evaluating ao, al, bo, andf  = f(8) at a fixed frequency ¢0. 

The algebraic system has been solved by Newton's method for the case co = 1. 
The following table presents values of a0, al and b0 and the amplitudes f obtained from the above 

system of algebraic equations as functions of the coefficient of friction 8 

x 104 1 5 10 30 50 100 
(a 0 - 1.21) x 105 498 503 508 530 553 609 
(a I - 0.621) x 106 807 803 819 848 876 943 

f x 106 87.6 438 876 2630 4386 8784 
b 0 x 106 58.2 291 582 1744 2906 5808 
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If (a0, al) is used as the starting point in numerical computation of the HO by the Runge-Kutta 
method, these numerical computations demonstrate the good accuracy of the analytical results. 

Some examples of HOs in the phase space, constructed using the Runge-Kutta method with initial 
conditions obtained from the system of algebraic equations, are shown in Fig. 1 for two choices of 
parameters: (a) 8 = 0.001, a 0 = 1.21508, az = 0.621819, b0 = 0.00058,f = 0.00087, and (b) 8 = 0.01, 
a0 = 1.21609, al = 0.621943, b0 = 0.0058,f = 0.00878. In case (b) the phase orbit was seen to be non- 
closed, owing to a certain error in the analytical calculation. Figure 2 compares the orbits constructed 
using the Runge-Kutta method (the solid curve) and the quasi-Pad6 approximant (2.10) (the dashed 
curve) for the above parameters, cases (a) and (b). In Fig. 3 we show curves in the space of the parameters 
(8, f) corresponding to the HOs; the solid curve was obtained by the method proposed here, and the 
dashed curve by Mel'nikov's method. 

However, when the frequency of the applied force ~o changes the solutions of the system of non-linear 
algebraic equations (2.8), (2.9), (2.11), (2.12) are seen to be unstable, owing to the high orders of the 
equations. In order to determine the dependence of the amplitude of the applied forcefon the frequency 
co, therefore, the procedure that yields the basic parameters of the HOs must be somewhat modified. 

We will rewrite the non-autonomous Duffing equation as 

y" + S y ' - y +  y 3 = 8fcos(0~t+q~) (2.13) 

Here f has the meaning of a coefficient of proportionality between the coefficient of friction 8 and 
the amplitude of the applied force, while the introduction of the phase q~ enables the point with 
coordinates (a0, 0) to be taken as the initial point. We shall assume that 8 is small. 
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Let us return to Eq. (2.5), but considering separately the equalities obtained by integration from 
t = 0 to t = + ~  and from t = 0 to t = --~, and also introducing corrections to allow for the modified 
form of the equation 

No + 6 1 (y' - fcos(o~t + ~p))y'dt = 0 
o 

No + ~ I (y ' -  fcos(olt  + tp))y'dt = 0 
0 

(2.14) 

Linearizing all the resolving equations relative to the small quantity g, we evaluate the integrals in 
(2.14) along th e separatrix of the autonomous Duffing equation Y0 = ~/2/ch(t). We obtain 

I (Yo- fcos(0lt  + ~p))Yodt = 
o 

+~ o 
2 

I Yo2dt = IYo2dt = 
0 - - ~  

+~ 0 
. . . .  ~ 4 5 r c r  . o~n~ -1 

I sm°~ty°dt = I sln°~ty°dt = ~ ~cn-~-) 

+,,~ +~ +~ 

I y°2dt- cosq0 1 fc°sc°ty'°dt + sing) I fc°s°3ty°dt  
o o o 

0 - - ~  

I c°sOlty°dt = - I c°sOlty°dt = - "f~ + 0)41~ ~ OJ~ -~th"~- + 40~ Z 2 1 
0 -~ k=°0) + (1+4k)2 

Substituting the values of the integrals into Eqs (2.14), we obtain algebraic equations which, together 
with relations (2.11) and (2.12), yield a system of equations for the unknowns a0, % b0, a n d f  = f(o~) 
for a fixed coefficient of friction & 

The following table lists values of a0, % andf  as functions of the frequency co for 8 = 0.001, obtained 
from the above system of algebraic equations on the assumption that b0 = 0. 

0.2 0.5 1.0 1.5 2 3 
(a o + 1.41) × 106 -4446 --4392 -4606 --4911 -5416 -7837 
q~ -4.994 -5.390 -5.279 -5.079 -4.972 -4.862 
f i.640 1.020 0.893 1.141 1.800 5.632 
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Figure 4 shows the relation between the parameters co and f corresponding to a HO obtained by the 
method described here (the solid curve) and by Mel'nikov's method (the dashed curve) for ~ = 0.001. 
Note that the boundary of the domain corresponding to chaotic behaviour in the parameter plane, 
obtained by the method proposed here, is situated above that obtained by Mel'nikov's method, that is, 
it is closer to the real domain of chaotic behaviour as determined by various investigators by numerical 
experimentation. 

3. THE VAN DER P O L - D U F F I N G  E Q U A T I O N  

We will now consider an equation which describes, in particular, panel flutter in a steady supersonic 
air flow [24-28] 

. ~ + 8 ( o ~ - ~ x 2 ) ~ - x + x  3 = 0; ~x,[3>0, 0 < 8 ~  1 (3.1) 

To construct a homoclinic orbit, we use a procedure analogous to that used for the non±aut0nomous 
Duffing equation. We first single out local expansions of the solution near the unstable singular point, 
obtained by the small parameter method, 

k±t 3 1 -- k ± ~  e 3k±t + . . . .  t ---) +oo (3.2) 
x = c±e - C ± 9 k 2 + 3 8 ~ k ± - I  

where k+ = ( -8a  ~ ~/~2~2 -t- 4)/2 are the roots of the characteristic equation k 2 + 6c0k - 1 = 0, and 
c+ are arbitrary constants. We also write down the local Taylor expansion ofx(t) in the neighbourhood 
of zero 

2 3 
x = a o + a 2 t  +a3t  + . . .  (3.3) 

where 
3 2 2 

a 2 = ( a o - a o ) / 2 ,  a 3 = - 8 ( - ~ +  ~ao)ao(a o -  1)/6 . . . .  

and a0 is an arbitrary constant. 
Thus, to construct the required homoclinic orbit, we must first evaluate the three constants c_. and 

a0 (Fig. 5). In what follows these values may be determined approximately from a system of three non- 
linear algebraic equations. 

We shall use the potentiality condition, first integrating Eq. (3.1), multiplied by 2 (t)i from t = 0 to 
t = ~ .  We obtain 

2 4 -+~ 
a 0 a 0 
T - -'4 + ~ I (0~ - ~x2)22dt  = 0 

0 
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Substituting the local expansion (3.3) into the integrand and rearranging the integrated expression 
as a Pad6 approximant 

t 

I(O~ - ~x2)fc2dt  = A t  3 + B t  4 + C t  5 + . . . .  

0 

we obtain in the limit as t ~ -2_ ~o 

~3  t3 + ~4 t4 

1 + I$1t + ~2 t2 + 1~3 t3 + ~4 t4 

2 4 
a0 a0 ~- - ~ -  + ~ = 0 ( 3 . 4 )  

Taking the form of the local expansionsx(t) at infinity (3.2) into account, we match these expansions 
with expansion (3.3) using quasi-Pad6 approximants 

2k±t 4k±t 
k±tO~ 0 + O~2e + (14e 

P+_== e 
1 + [~2 e2k±t + ~4 e4k±t 

(3.5) 

The coefficients of the approximants P+= and P ~  are evaluated by comparison with expansions (3.2) 
and (3.3). 

We thus obtain a representation of the solution for both positive and negative values of t, and also 
two equations that appear when the convergence condition (1.2) for the approximants P+=, P ~  is used. 
These equations, together with condition (3.4), form a system of algebraic equations for the unknown 
constants and local expansions. 

The following table lists values of a0 and c_+ obtained from the system of three non-linear algebraic 
equations for different values of 8 and for ~ = 0.8, 13 = 1 

x 104 1 10 I00 1000 2000 4000 
(a 0 -  1.41) x 106 4214 4214 4216 4450 5160 8052 
(c+ - 2.8) x 103 2670 2863 3045 4792 65760 97 111 
(c_ - 2.8) × 105 2660 2763 2058 -4849 -12 197 -25881 



T h e  cons t ruc t ion  o f  h o m o -  and  he te roc l in ic  orbi ts  in non- l inea r  systems 47 

-1 

j 
-10 0 10 

Fig. 7 

l 
l 

I 
I 

I 
1 I 
l I 
i I 
I ! 

i I 

Figure  6 shows examples  of  orbi ts  o b t a i n e d  by the R u n g e - K u t t a  m e t h o d  for  d i f ferent  va lues  of  the  
p a r a m e t e r  8 wi th  ini t ial  da t a  o b t a i n e d  f rom the  system of  a lgebra ic  equat ions .  F igure  7 c o m p a r e s  an 
orb i t  o b t a i n e d  by the  R u n g e - K u t t a  m e t h o d  ( the da shed  curve)  wi th  the  quas i -Pad6 app rox iman t s  P ~  
(curve 1) and  P+= (curve 2) according  to f o r m u l a e  (3.5) with 5 = 0.01. I t  is obvious  tha t  even slight 
er rors  in the  R u n g e - K u t t a  m e t h o d  will make  the co r respond ing  orbi t  pass by the  uns tab le  s ingular  po in t  
and  escape  into  the  left  ha l f -p lane .  
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